Need immediate assistance? Call 1-518-730-0559 (Us-Canada Toll Free) or Contact Us


GaN Power Devices Market Global Industry Analysis (2012 - 2016) and Opportunity Assessment (2017 - 2027)

Report Description

High demand in the consumer electronics industry and varied applications of GaN transistors expected to boost the growth of the GaN (Gallium Nitride) power devices market in Japan

The Japanese electronics industry is one of the largest consumer electronics industries in the world. With a large revenue share, demand for semiconductors is high and GaN power devices being compact, efficient and with low capacitance, result in minimising energy losses during charging and discharging. This is likely to encourage demand in the market and subsequently drive overall market growth.

GaN is widely used in transistors and due to its enhanced properties such as high thermal conductivity, high voltage potential and large critical fields, these devices offer high switching frequencies and high power density enabling transistors to operate at high voltage levels. These transistors have applications in various fields and provide good results, which is another factor driving market growth. For instance, in Jan 2016, Fujitsu Limited, which is a Japan based IT equipment manufacturing company, developed a GaN high-electron mobility transistor power amplifier with the world’s highest output performance for wideband wireless transmissions, which was 1.8X greater than before, enabling over 30% greater range for a high-speed wireless network.

Increasing research and development initiatives in GaN substrate is also responsible for the growth of the Japan GaN power devices market. Due to features of GaN technology such as high breakdown voltage, high switching frequency and miniaturisation, demand for GaN power devices has been increasing and continuous research is being done by research centres in Japan in order to determine and increase efficiencies of GaN. For example, a few years ago, a team of researchers from the Institute of Industrial Science at the University of Tokyo developed a new technology for creating GaN LEDs on the glass substrate. With the help of this development, manufacturing costs can be cut down along with actualising OLED light panels.

Shrink path of semiconductor power devices is one of the main factors restraining the growth of the GaN power devices market in Japan

One of the factors hampering the growth of the Gallium Nitride power devices market is the shrinking path of semiconductor power devices. With increasing high current density in GaN devices, problems related to existing assembly and interconnect technologies are increasing. The major problems include low impedance interconnects, higher thermal resistance and lower thermal capacitance per chip demanding higher chip temperature and better thermal interconnects. The need to handle higher current densities per package and the same heat flow coming from smaller footprints to be removed from the ambient environment is also growing. These factors continue to remain a challenge for the GaN power devices market in Japan. In terms of value, the Japan GaN power devices market registered a CAGR of 17.8% from 2012–2016 and is expected to exhibit a CAGR of 23.1% from 2017–2027. In 2017, the Japan GaN power devices market is expected to be valued at more than US$ 100 Mn and is projected to reach more than US$ 800 Mn by the end of 2027. The GaN power devices market in Japan is expected to represent incremental opportunity of a little more than US$ 700 Mn between 2017 and 2027. The Japan regional market is projected to be the most attractive market in the global GaN power devices market during the forecast period in terms of value. However, in terms of year on year growth, the Latin America GaN power devices market will register high Y-o-Y growth rates throughout the forecast period.

Custom Market Research Services

MRRSE offers custom market research services that help clients to get information on their business scenario required where syndicated solutions are not enough.

Get A Free Custom Research Quote